Isotropic minimal submanifolds in a space form
نویسندگان
چکیده
منابع مشابه
Isotropic Lagrangian Submanifolds in Complex Space Forms
In this paper we study isotropic Lagrangian submanifolds , in complex space forms . It is shown that they are either totally geodesic or minimal in the complex projective space , if . When , they are either totally geodesic or minimal in . We also give a classification of semi-parallel Lagrangian H-umbilical submanifolds.
متن کاملisotropic lagrangian submanifolds in complex space forms
in this paper we study isotropic lagrangian submanifolds , in complex space forms . it is shown that they are either totally geodesic or minimal in the complex projective space , if . when , they are either totally geodesic or minimal in . we also give a classification of semi-parallel lagrangian h-umbilical submanifolds.
متن کاملRICCI CURVATURE OF SUBMANIFOLDS OF A SASAKIAN SPACE FORM
Involving the Ricci curvature and the squared mean curvature, we obtain basic inequalities for different kind of submaniforlds of a Sasakian space form tangent to the structure vector field of the ambient manifold. Contrary to already known results, we find a different necessary and sufficient condition for the equality for Ricci curvature of C-totally real submanifolds of a Sasakian space form...
متن کاملRigidity of Minimal Submanifolds in Space Forms
(1.1) Let c be a real number. Represent by A4"(c) a n-dimensional space form of curvature c. Let M N be a N-dimensional connected Riemannian manifold. The question that served as the starting point for this paper was to find simple conditions on the metric of M so that, if f:M"~ffl"+P(c), p>= 1, is an isometric minimal immersion then f is rigid in the following sense: given another minimal imme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tsukuba Journal of Mathematics
سال: 1988
ISSN: 0387-4982
DOI: 10.21099/tkbjm/1496160846